Optimal Bayesian posterior concentration rates with empirical priors

نویسندگان

  • Ryan Martin
  • Stephen G. Walker
چکیده

In high-dimensional Bayesian applications, choosing a prior such that the corresponding posterior distribution has optimal asymptotic concentration properties can be restrictive in the sense that the priors supported by theory may not be computationally convenient, and vice versa. This paper develops a general strategy for constructing empirical or data-dependent priors whose corresponding posterior distributions have optimal concentration rate properties. The basic idea is to center the prior in a specific way on a good estimator. This makes the asymptotic properties of the posterior less sensitive to the shape of the prior which, in turn, allows users to work with priors of convenient forms while maintaining the optimal posterior concentration rates. General results on both adaptive and non-adaptive rates based on empirical priors are presented, along with illustrations in density estimation, nonparametric regression, and high-dimensional structured normal models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian shrinkage

Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimension...

متن کامل

Adaptive Bayesian Density Estimation with Location-Scale Mixtures

Abstract: We study convergence rates of Bayesian density estimators based on finite location-scale mixtures of a kernel proportional to exp{−|x|p}. We construct a finite mixture approximation of densities whose logarithm is locally β-Hölder, with squared integrable Hölder constant. Under additional tail and moment conditions, the approximation is minimax for both the Kullback-Leibler divergence...

متن کامل

Posterior Contraction in Sparse Bayesian Factor Models for Massive Covariance

Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Branch-length prior influences Bayesian posterior probability of phylogeny.

The Bayesian method for estimating species phylogenies from molecular sequence data provides an attractive alternative to maximum likelihood with nonparametric bootstrap due to the easy interpretation of posterior probabilities for trees and to availability of efficient computational algorithms. However, for many data sets it produces extremely high posterior probabilities, sometimes for appare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016